Expansion of Toxoplasma gondii cysts in vitro using enzymatically enhanced ultrastructure expansion microscopy

Abstract number
42
Presentation Form
Poster
DOI
10.22443/rms.elmi2024.42
Corresponding Email
[email protected]
Session
Poster Session
Authors
Kseniia Bondarenko (2), Kayvon Pedram (1), Mathieu Gissot (3), Joanna Young (2)
Affiliations
1. Howard Hughes Medical Institute
2. University of Edinburgh
3. University of Lille
Keywords

Ultrastructure expansion microscopy, expansion microscopy, ExM, U-ExM, Toxoplasma, cyst, confocal, StcE

Abstract text

Expansion microscopy (ExM) is an innovative approach to achieve super-resolution images without using super-resolution microscopes, based on the physical expansion of the sample. The advent of ExM has unlocked super-resolution imaging for a broader scientific circle, lowering the cost and entry skill requirements to the field. One of its branches, ultrastructure ExM (U-ExM), has become popular among research groups studying Apicomplexan parasites, including the acute stage of Toxoplasma gondii infection. The chronic cyst-forming stage of Toxoplasma, however, resists U-ExM expansion, impeding precise protein localisation. Here, we solve the cyst’s resistance to denaturation required for successful U-ExM of the encapsulated parasites. As the cyst's main structural protein CST1 contains a mucin domain, we added an enzymatic digestion step using pan-mucinase StcE prior to the expansion protocol. This allowed full expansion of the cysts in fibroblasts and primary neuronal culture without interference with the epitopes of the cyst-wall associated proteins. Using StcE-enhanced U-ExM, we clarified the shape and location of the GRA2 protein important for establishing a normal cyst. Expanded cysts revealed GRA2 granules spanning across the cyst wall, with a notable presence observed outside on both sides of the CST1-positive layer. 

References

Ambekar, Sushma Vadiraj. Guardians of the Plasmodium nuclear galaxy: Identification and characterization of Plasmodium berghei nuclear pore proteins. Diss. Iowa State University, 2022.  

AtchouKodzo, et al., "Pre-gelation staining expansion microscopy for visualisation of the Plasmodium liver stage." Journal of cell science 136.22 (2023).  

BertiauxEloïse, et al., "Expansion microscopy provides new insights into the cytoskeleton of malaria parasites including the conservation of a conoid." PLoS biology 19.3 (2021): e3001020.  

BertiauxEloïse, et al., "Expansion microscopy provides new insights into the cytoskeleton of malaria parasites including the conservation of a conoid." PLoS biology 19.3 (2021): e3001020.  

Boothroyd, John C., et al., "Genetic and biochemical analysis of development in Toxoplasma gondii." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 352.1359 (1997): 1347-1354.  

Brusini, Lorenzo, et al., "Composition and organization of kinetochores show plasticity in apicomplexan chromosome segregation." Journal of Cell Biology 221.9 (2022): e202111084.  

Caffaro, Carolina E., and John C. Boothroyd. "Evidence for host cells as the major contributor of lipids in the intravacuolar network of Toxoplasma-infected cells." Eukaryotic Cell 10.8 (2011): 1095-1099.  

Calla, Jaeson, et al., "Plasmodium exoerythrocytic parasites redirect trafficking of human proteins to the parasitophorous vacuole." bioRxiv (2022): 2022-11.  

Chen, Fei, Paul W. Tillberg, and Edward S. Boyden. "Expansion microscopy." Science 347.6221 (2015): 543-548.  

Cheng, Zhangyu, et al. "MicroMagnify: A Multiplexed Expansion Microscopy Method for Pathogens and Infected Tissues." Advanced Science 10.30 (2023): 2302249. 

Christiansen, Céline, et al., "In vitro maturation of Toxoplasma gondii bradyzoites in human myotubes and their metabolomic characterization." Nature Communications 13.1 (2022): 1168.  

da Silva, Marialice da Fonseca Ferreira, et al., "Stress-related and spontaneous stage differentiation of Toxoplasma gondii." Molecular BioSystems 4.8 (2008): 824-834.  

Damstra, Hugo GJ, et al., "Visualizing cellular and tissue ultrastructure using Ten-fold Robust Expansion Microscopy (TREx)." Elife 11 (2022): e73775.  

Dave, Noopur, Kaice LaFavers, and Gustavo Arrizabalaga. "The dually localized EF-hand domain-containing protein TgEFP1 regulates the lytic cycle of Toxoplasma gondii." Cells 11.10 (2022): 1709.  

Dos Santos Pacheco, Nicolas, et al., "Conoid extrusion regulates glideosome assembly to control motility and invasion in Apicomplexa." Nature Microbiology 7.11 (2022): 1777-1790.  

Dos Santos Pacheco, Nicolas, et al., "Revisiting the Role of Toxoplasma gondii ERK7 in the Maintenance and Stability of the Apical Complex." MBio 12.5 (2021): 10-1128.  

Dou, Zhicheng, et al., "Toxoplasma gondii ingests and digests host cytosolic proteins." MBio 5.4 (2014): 10-1128.  

Dubey, J. P., D. S. Lindsay, and CA106833 Speer. "Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts." Clinical microbiology reviews 11.2 (1998): 267-299.  

EngelbergKlemens, et al., "Proteomic characterization of the Toxoplasma gondii cytokinesis machinery portrays an expanded hierarchy of its assembly and function." Nature Communications 13.1 (2022): 4644.  

Ferguson, D. J. P. "Structural and molecular differences in the host parasite relationship between the enteric (coccidian) and exoenteric forms of Toxoplasma gondii." The journal of protozoology research 9.4 (1999): 141-151.  

Ferguson, D. J. P. "Use of molecular and ultrastructural markers to evaluate stage conversion of Toxoplasma gondii in both the intermediate and definitive host." International journal for parasitology 34.3 (2004): 347-360.  

Fox, Barbara A., et al., "Toxoplasma gondii parasitophorous vacuole membrane-associated dense granule proteins orchestrate chronic infection and GRA12 underpins resistance to host gamma interferon." MBio 10.4 (2019): 10-1128.  

Gambarotto, Davide, et al., "Imaging cellular ultrastructures using expansion microscopy (U-ExM)." Nature methods 16.1 (2019): 71-74.  

Gambarotto, Davide, Virginie Hamel, and Paul Guichard. "Ultrastructure expansion microscopy (U-ExM)." Methods in Cell Biology. Vol. 161. Academic Press, 2021. 57-81.  

Gaskins, Elizabeth, et al., "Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii." The Journal of cell biology 165.3 (2004): 383-393.  

Griffith, Michael B., Camille S. Pearce, and Aoife T. Heaslip. "Dense granule biogenesis, secretion, and function in Toxoplasma gondii." Journal of Eukaryotic Microbiology 69.6 (2022): e12904.  

Gubbels, M. J., et al., "The modular circuitry of Apicomplexan cell division plasticity. Front Cell Infect Microbiol 11: 670049." (2021).  

Guérin, Amandine, et al., "Cryptosporidium rhoptry effector protein ROP1 injected during invasion targets the host cytoskeletal modulator LMO7." Cell Host & Microbe 29.9 (2021): 1407-1420.  

Guevara, Rebekah B., et al., "Toxoplasma gondii intravacuolar-network-associated dense granule proteins regulate maturation of the cyst matrix and cyst wall." MSphere 4.5 (2019): e00487-19.  

John, Alan, et al., "Conservation, abundance, glycosylation profile, and localization of the TSP protein family in Cryptosporidium parvum." Journal of Biological Chemistry 299.3 (2023).  

Kannan, Geetha, et al., "Acquisition of host cytosolic protein by Toxoplasma gondii Bradyzoites." MSphere 6.1 (2021): 10-1128.  

Lemgruber, Leandro, et al., "The organization of the wall filaments and characterization of the matrix structures of Toxoplasma gondii cyst form." Cellular microbiology 13.12 (2011): 1920-1932.  

LentiniGaëlle, et al., "Structural insights into an atypical secretory pathway kinase crucial for Toxoplasma gondii invasion." Nature Communications 12.1 (2021): 3788.  

Liffner, Benjamin, and Sabrina Absalon"Expansion microscopy of apicomplexan parasites." Molecular Microbiology (2023).   

Liffner, Benjamin, and Sabrina Absalon. "Expansion microscopy reveals Plasmodium falciparum blood-stage parasites undergo anaphase with a chromatin bridge in the absence of mini-chromosome maintenance complex binding protein." Microorganisms 9.11 (2021): 2306.  

Loubens, Manon, et al., "The claudin-like apicomplexan microneme protein is required for gliding motility and infectivity of Plasmodium sporozoites." PLoS Pathogens 19.3 (2023): e1011261.  

Louvel, Vincent, et al., "Nanoscopy of organelles and tissues with iterative ultrastructure expansion microscopy (iU-ExM)." bioRxiv (2022): 2022-11.  

Malaker, Stacy A., et al., "The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins." Proceedings of the National Academy of Sciences 116.15 (2019): 7278-7287.  

Mercier, Corinne, et al., "Targeted disruption of the GRA2 locus in Toxoplasma gondii decreases acute virulence in mice." Infection and immunity 66.9 (1998): 4176-4182.  

Montano, Hilary, et al., "TgTKL4 Is a Novel Kinase That Plays an Important Role in Toxoplasma Morphology and Fitness." Msphere 8.2 (2023): e00649-22.  

Morano, Alexander A., Rachel M. Rudlaff, and Jeffrey D. Dvorin. "A PPP-type pseudophosphatase is required for the maintenance of basal complex integrity in Plasmodium falciparum." Nature Communications 14.1 (2023): 3916.  

Mouveaux, Thomas, et al., "Primary brain cell infection by Toxoplasma gondii reveals the extent and dynamics of parasite differentiation and its impact on neuron biology." Open biology 11.10 (2021): 210053.  

Nadipuram, Santhosh M., et al. "In vivo biotinylation of the Toxoplasma parasitophorous vacuole reveals novel dense granule proteins important for parasite growth and pathogenesis." MBio 7.4 (2016): 10-1128. 

Nolan, Sabrina J., Julia D. Romano, and Isabelle Coppens. "Host lipid droplets: an important source of lipids salvaged by the intracellular parasite Toxoplasma gondii." PLoS pathogens 13.6 (2017): e1006362.  

Oliveira Souza, Rodolpho Ornitz, et al., "IMC10 and LMF1 mediate mitochondrial morphology through mitochondrion–pellicle contact sites in Toxoplasma gondii." Journal of Cell Science 135.22 (2022): jcs260083.  

Pavlou, G., et al., "Coupling Polar Adhesion with Traction, Spring, and Torque Forces Allows High-Speed Helical Migration of the Protozoan Parasite Toxoplasma. ACS Nano. 2020; 14 (6): 7121–39."  

PedramKayvon, et al., "Design of a mucin-selective protease for targeted degradation of cancer-associated mucins." Nature Biotechnology (2023): 1-11.  

Qian, Pengge, et al., "Inner membrane complex proteomics reveals a palmitoylation regulation critical for intraerythrocytic development of malaria parasite." Elife 11 (2022): e77447.  

Rashpa, Ravish, and Mathieu Brochet. "Expansion microscopy of Plasmodium gametocytes reveals the molecular architecture of a bipartite microtubule organisation centre coordinating mitosis with axoneme assembly." PLoS Pathogens 18.1 (2022): e1010223.  

Rashpa, Ravish, et al., "The Skp1-Cullin1-FBXO1 complex is a pleiotropic regulator required for the formation of gametes and motile forms in Plasmodium berghei." Nature Communications 14.1 (2023): 1312.  

Severo, Vanessa, et al., "Previously unidentified histone H1-like protein is involved in cell division and ribosome biosynthesis in toxoplasma gondii." Msphere 7.6 (2022): e00403-22.  

Sibley, L. David, et al. "Regulated secretion of multi-lamellar vesicles leads to formation of a tubulo-vesicular network in host-cell vacuoles occupied by Toxoplasma gondii." Journal of cell science 108.4 (1995): 1669-1677. 

Simon, Caroline S., et al., "An extended DNA-free intranuclear compartment organizes centrosome microtubules in malaria parasites." Life science alliance 4.11 (2021).  

Sims, T. A., J. Hay, and I. C. Talbot. "Host—parasite relationship in the brains of mice with congenital toxoplasmosis." The Journal of pathology 156.3 (1988): 255-261.  

Sparvoli, Daniela, et al., "An apical membrane complex for triggering rhoptry exocytosis and invasion in Toxoplasma." The EMBO Journal 41.22 (2022): e111158.  

Tomasina, Ramiro, et al., "Separate to operate: The centriole-free inner core of the centrosome regulates the assembly of the intranuclear spindle in Toxoplasma gondii." Mbio 13.5 (2022): e01859-22.  

Tomita, Tadakimi, et al., "The Toxoplasma gondii cyst wall protein CST1 is critical for cyst wall integrity and promotes bradyzoite persistence." PLoS pathogens 9.12 (2013): e1003823.  

TosettiNicolò, et al., "Essential function of the alveolin network in the subpellicular microtubules and conoid assembly in Toxoplasma gondii." Elife 9 (2020): e56635.  

Tu, Vincent, et al., "Enrichment and proteomic characterization of the cyst wall from in vitro Toxoplasma gondii cysts." MBio 10.2 (2019): 10-1128.  

Tu, Vincent, et al., "The Toxoplasma gondii cyst wall interactome." MBio 11.1 (2020): 10-1128.  

Vizcarra, Edward A., et al., "An ex vivo model of Toxoplasma recrudescence reveals developmental plasticity of the bradyzoite stage." Mbio (2023): e01836-23.  

Watts, Elizabeth, et al., "Novel approaches reveal that Toxoplasma gondii bradyzoites within tissue cysts are dynamic and replicating entities in vivo." MBio 6.5 (2015): 10-1128.  

Weiss, Louis M., and Kami Kim, eds. Toxoplasma gondii: the model apicomplexan. Perspectives and methods. Elsevier, 2011.  

Yang, Chunlin, et al., "The protein phosphatase PPKL is a key regulator of daughter parasite development in Toxoplasma gondii." bioRxiv (2023): 2023-06.  

Yang, Shuzhen, et al., "EB1 decoration of microtubule lattice facilitates spindle-kinetochore lateral attachment in Plasmodium male gametogenesis." Nature Communications 14.1 (2023): 2864.  

Zeeshan, Mohammad, et al., "Plasmodium ARK2-EB1 axis drives the unconventional spindle dynamics, scaffold formation and chromosome segregation of sexual transmission stages." Research Square (2023). 

Zhang, Yi Wei, et al., "Initial characterization of CST1, a Toxoplasma gondii cyst wall glycoprotein." Infection and immunity 69.1 (2001): 501-507.