Widefield FLIM imaging with an ultra-sensitive single Photon Counting Camera

Abstract number
164
Presentation Form
Poster
DOI
10.22443/rms.elmi2024.164
Corresponding Email
[email protected]
Session
Poster Session
Authors
André Weber (2), Yury Prokazov (4), Stefan Richter (2), Ezgi Altun (3), Rodrigo Herrera-Molina (1, 5), Torsten Stöter (2), Werner Zuschratter (2)
Affiliations
1. CIBQA - Universidad Bernardo O‘Higgins
2. Leibniz Institute for Neurobiology
3. Otto von Guericke University
4. Photonscore GmbH
5. GWU - The George Washington University
Keywords

Fluorescence Lifetime Imaging Microscopy (FLIM)

Single Photon Counting camera

Metabolic Imaging

Labe free Imaging

Multimodal Imaging


Abstract text

Current fluorescence microscopy often requires relatively high doses of light, which can harm living specimens due to photon damage. In this paper, we introduce an alternative approach using a wide-field imaging technique with a highly sensitive detector. Our system utilizes a position-sensitive detector with multichannel plates for electron amplification (LINCam, Photonscore GmbH), and operates based on single-photon counting. With new photocathodes boasting high quantum efficiency and exceptional signal-to-noise ratios, our system allows imaging under very low light conditions (< 30 mW/cm2), producing diffraction-limited FLIM images by capturing individual light quanta's position and time information in a continuous data stream. This method offers a positional accuracy akin to a 1000 × 1000 pixel camera with a time accuracy of 40 ps, facilitating long observation times for sensitive samples. Its applications span calcium imaging, single molecule detection, FLIM-FRET, and quantum optics. Additionally, it enables label-free imaging of metabolic processes by detecting autofluorescence from metabolites like NADH and FAD, promising new avenues for studying cellular and tissue vitality under pharmacological stress and distinguishing between healthy and diseased tissue in medical diagnostics. Moreover, the system can simultaneously gather multimodal data from multiple detectors and can be expanded with a spectrometer into a hyperspectral time-resolved Raman FLIM imaging system.

References

1. Hartig R, Prokazov Y, Turbin E, Zuschratter W. 2014. Wide-Field fluorescence lifetime imaging with multi-anode detectors. in Fluorescence Spectroscopy and Microscopy: Methods and Protocols. Humana Press Inc. S. 457-480. (Methods in Molecular Biology). https://doi.org/10.1007/978-1-62703-649-8_20

2. Prokazov Y, Turbin E, Weber A, Hartig R, Zuschratter W. 2014. Position sensitive detector for fluorescence lifetime imaging. Journal of Instrumentation. 9(12):  Article C12015. https://doi.org/10.1088/1748-0221/9/12/C12015 

3. Weber A, Zuschratter W, Hauser MJB. 2020. Partial synchronisation of glycolytic oscillations in yeast cell populations. Scientific Reports. 10(1): Article 19714. https://doi.org/10.1038/s41598-020-76242-8

4. Wang M, Weber A, Hartig R, Zheng Y, Krafft D, Vidaković-Koch T, Zuschratter W, Ivanov I, Sundmacher K. 2021. Scale up of Transmembrane NADH Oxidation in Synthetic Giant Vesicles. Bioconjugate chemistry. 32(5):897-903. https://doi.org/10.1021/acs.bioconjchem.1c00096

5. Oleksiievets N, Mathew C, Thiele JC, Gallea JI, Nevskyi O, Gregor I, Weber A, Tsukanov R, Enderlein J. 2022. Single-Molecule Fluorescence Lifetime Imaging Using Wide-Field and Confocal-Laser Scanning Microscopy: A Comparative Analysis. Nano letters. https://doi.org/10.1021/acs.nanolett.2c01586

6. Richter S, Wolf S, Zanthier J.v., Schmidt-Kaler, F. 2021 Imaging Trapped Ion Structures via Fluorescence Cross-Correlation Detection. Phys. Rev. Lett. 126, 173602, 2021

7. Tran VL, Génot V, Audibert J-F, Prokazov Y, Turbin E, Zuschratter W, Kim H-J, Jung C, Park SY, Pansu RB. 2016. Nucleation and growth during a fluorogenic precipitation in a micro-flow mapped by fluorescence lifetime microscopy. New Journal of Chemistry. 40(5):4601-4605. https://doi.org/10.1039/c5nj03400k

8. Konugolu Venkata Sekar S, Mosca S, Tannert S, Valentini G, Martelli F, Binzoni T, Prokazov Y, Turbin E, Zuschratter W, Erdmann R, Pifferi A. 2018. Time domain diffuse Raman spectrometer based on a TCSPC camera for the depth analysis of diffusive media. Optics Letters. 43(9):2134-2137. https://doi.org/10.1364/OL.43.002134

9. Sekar SKV, Mosca S, Valentini G, Zuschratter W, Erdmann R, Pifferi A. 2018. Compact time domain diffuse raman instrumentation based on a TCSPC camera for depth probing of diffusive media. In Optical Tomography and Spectroscopy, OTS 2018. OSA - The Optical Society. https://doi.org/10.1364/OTS.2018.OTu4D.2

10. Philipsen L, Reddycherla AV, Hartig R, Gumz J, Kästle M, Kritikos A, Poltorak MP, Prokazov Y, Turbin E, Weber A, Zuschratter W, Schraven B, Simeoni L, Müller AJ. 2017. De novo phosphorylation and conformational opening of the tyrosine kinase Lck act in concert to initiate T cell receptor signaling. Science Signaling. 10(462). https://doi.org/10.1126/scisignal.aaf4736.